Metamath Proof Explorer


Theorem 2wlkdlem4

Description: Lemma 4 for 2wlkd . (Contributed by AV, 14-Feb-2021)

Ref Expression
Hypotheses 2wlkd.p P = ⟨“ ABC ”⟩
2wlkd.f F = ⟨“ JK ”⟩
2wlkd.s φ A V B V C V
Assertion 2wlkdlem4 φ k 0 F P k V

Proof

Step Hyp Ref Expression
1 2wlkd.p P = ⟨“ ABC ”⟩
2 2wlkd.f F = ⟨“ JK ”⟩
3 2wlkd.s φ A V B V C V
4 1 2 3 2wlkdlem3 φ P 0 = A P 1 = B P 2 = C
5 simp1 P 0 = A P 1 = B P 2 = C P 0 = A
6 5 eleq1d P 0 = A P 1 = B P 2 = C P 0 V A V
7 simp2 P 0 = A P 1 = B P 2 = C P 1 = B
8 7 eleq1d P 0 = A P 1 = B P 2 = C P 1 V B V
9 simp3 P 0 = A P 1 = B P 2 = C P 2 = C
10 9 eleq1d P 0 = A P 1 = B P 2 = C P 2 V C V
11 6 8 10 3anbi123d P 0 = A P 1 = B P 2 = C P 0 V P 1 V P 2 V A V B V C V
12 11 bicomd P 0 = A P 1 = B P 2 = C A V B V C V P 0 V P 1 V P 2 V
13 4 12 syl φ A V B V C V P 0 V P 1 V P 2 V
14 3 13 mpbid φ P 0 V P 1 V P 2 V
15 2 fveq2i F = ⟨“ JK ”⟩
16 s2len ⟨“ JK ”⟩ = 2
17 15 16 eqtri F = 2
18 17 oveq2i 0 F = 0 2
19 fz0tp 0 2 = 0 1 2
20 18 19 eqtri 0 F = 0 1 2
21 20 raleqi k 0 F P k V k 0 1 2 P k V
22 c0ex 0 V
23 1ex 1 V
24 2ex 2 V
25 fveq2 k = 0 P k = P 0
26 25 eleq1d k = 0 P k V P 0 V
27 fveq2 k = 1 P k = P 1
28 27 eleq1d k = 1 P k V P 1 V
29 fveq2 k = 2 P k = P 2
30 29 eleq1d k = 2 P k V P 2 V
31 22 23 24 26 28 30 raltp k 0 1 2 P k V P 0 V P 1 V P 2 V
32 21 31 bitri k 0 F P k V P 0 V P 1 V P 2 V
33 14 32 sylibr φ k 0 F P k V