Metamath Proof Explorer


Theorem 2wlkdlem6

Description: Lemma 6 for 2wlkd . (Contributed by AV, 23-Jan-2021)

Ref Expression
Hypotheses 2wlkd.p P = ⟨“ ABC ”⟩
2wlkd.f F = ⟨“ JK ”⟩
2wlkd.s φ A V B V C V
2wlkd.n φ A B B C
2wlkd.e φ A B I J B C I K
Assertion 2wlkdlem6 φ B I J B I K

Proof

Step Hyp Ref Expression
1 2wlkd.p P = ⟨“ ABC ”⟩
2 2wlkd.f F = ⟨“ JK ”⟩
3 2wlkd.s φ A V B V C V
4 2wlkd.n φ A B B C
5 2wlkd.e φ A B I J B C I K
6 prcom A B = B A
7 6 sseq1i A B I J B A I J
8 7 biimpi A B I J B A I J
9 8 adantl φ A B I J B A I J
10 3 simp2d φ B V
11 3 simp1d φ A V
12 11 adantr φ A B I J A V
13 prssg B V A V B I J A I J B A I J
14 10 12 13 syl2an2r φ A B I J B I J A I J B A I J
15 9 14 mpbird φ A B I J B I J A I J
16 15 simpld φ A B I J B I J
17 16 ex φ A B I J B I J
18 simpr φ B C I K B C I K
19 3 simp3d φ C V
20 19 adantr φ B C I K C V
21 prssg B V C V B I K C I K B C I K
22 10 20 21 syl2an2r φ B C I K B I K C I K B C I K
23 18 22 mpbird φ B C I K B I K C I K
24 23 simpld φ B C I K B I K
25 24 ex φ B C I K B I K
26 17 25 anim12d φ A B I J B C I K B I J B I K
27 5 26 mpd φ B I J B I K