Metamath Proof Explorer


Theorem 2wlkdlem6

Description: Lemma 6 for 2wlkd . (Contributed by AV, 23-Jan-2021)

Ref Expression
Hypotheses 2wlkd.p P=⟨“ABC”⟩
2wlkd.f F=⟨“JK”⟩
2wlkd.s φAVBVCV
2wlkd.n φABBC
2wlkd.e φABIJBCIK
Assertion 2wlkdlem6 φBIJBIK

Proof

Step Hyp Ref Expression
1 2wlkd.p P=⟨“ABC”⟩
2 2wlkd.f F=⟨“JK”⟩
3 2wlkd.s φAVBVCV
4 2wlkd.n φABBC
5 2wlkd.e φABIJBCIK
6 prcom AB=BA
7 6 sseq1i ABIJBAIJ
8 7 biimpi ABIJBAIJ
9 8 adantl φABIJBAIJ
10 3 simp2d φBV
11 3 simp1d φAV
12 11 adantr φABIJAV
13 prssg BVAVBIJAIJBAIJ
14 10 12 13 syl2an2r φABIJBIJAIJBAIJ
15 9 14 mpbird φABIJBIJAIJ
16 15 simpld φABIJBIJ
17 16 ex φABIJBIJ
18 simpr φBCIKBCIK
19 3 simp3d φCV
20 19 adantr φBCIKCV
21 prssg BVCVBIKCIKBCIK
22 10 20 21 syl2an2r φBCIKBIKCIKBCIK
23 18 22 mpbird φBCIKBIKCIK
24 23 simpld φBCIKBIK
25 24 ex φBCIKBIK
26 17 25 anim12d φABIJBCIKBIJBIK
27 5 26 mpd φBIJBIK