Metamath Proof Explorer


Theorem 2wlkdlem9

Description: Lemma 9 for 2wlkd . (Contributed by AV, 14-Feb-2021)

Ref Expression
Hypotheses 2wlkd.p P = ⟨“ ABC ”⟩
2wlkd.f F = ⟨“ JK ”⟩
2wlkd.s φ A V B V C V
2wlkd.n φ A B B C
2wlkd.e φ A B I J B C I K
Assertion 2wlkdlem9 φ A B I F 0 B C I F 1

Proof

Step Hyp Ref Expression
1 2wlkd.p P = ⟨“ ABC ”⟩
2 2wlkd.f F = ⟨“ JK ”⟩
3 2wlkd.s φ A V B V C V
4 2wlkd.n φ A B B C
5 2wlkd.e φ A B I J B C I K
6 1 2 3 4 5 2wlkdlem8 φ F 0 = J F 1 = K
7 fveq2 F 0 = J I F 0 = I J
8 7 adantr F 0 = J F 1 = K I F 0 = I J
9 8 sseq2d F 0 = J F 1 = K A B I F 0 A B I J
10 fveq2 F 1 = K I F 1 = I K
11 10 adantl F 0 = J F 1 = K I F 1 = I K
12 11 sseq2d F 0 = J F 1 = K B C I F 1 B C I K
13 9 12 anbi12d F 0 = J F 1 = K A B I F 0 B C I F 1 A B I J B C I K
14 6 13 syl φ A B I F 0 B C I F 1 A B I J B C I K
15 5 14 mpbird φ A B I F 0 B C I F 1