Database
GRAPH THEORY
Walks, paths and cycles
Walks/paths of length 2 (as length 3 strings)
2wlkdlem9
Next ⟩
2wlkdlem10
Metamath Proof Explorer
Ascii
Unicode
Theorem
2wlkdlem9
Description:
Lemma 9 for
2wlkd
.
(Contributed by
AV
, 14-Feb-2021)
Ref
Expression
Hypotheses
2wlkd.p
⊢
P
=
〈“
A
B
C
”〉
2wlkd.f
⊢
F
=
〈“
J
K
”〉
2wlkd.s
⊢
φ
→
A
∈
V
∧
B
∈
V
∧
C
∈
V
2wlkd.n
⊢
φ
→
A
≠
B
∧
B
≠
C
2wlkd.e
⊢
φ
→
A
B
⊆
I
⁡
J
∧
B
C
⊆
I
⁡
K
Assertion
2wlkdlem9
⊢
φ
→
A
B
⊆
I
⁡
F
⁡
0
∧
B
C
⊆
I
⁡
F
⁡
1
Proof
Step
Hyp
Ref
Expression
1
2wlkd.p
⊢
P
=
〈“
A
B
C
”〉
2
2wlkd.f
⊢
F
=
〈“
J
K
”〉
3
2wlkd.s
⊢
φ
→
A
∈
V
∧
B
∈
V
∧
C
∈
V
4
2wlkd.n
⊢
φ
→
A
≠
B
∧
B
≠
C
5
2wlkd.e
⊢
φ
→
A
B
⊆
I
⁡
J
∧
B
C
⊆
I
⁡
K
6
1
2
3
4
5
2wlkdlem8
⊢
φ
→
F
⁡
0
=
J
∧
F
⁡
1
=
K
7
fveq2
⊢
F
⁡
0
=
J
→
I
⁡
F
⁡
0
=
I
⁡
J
8
7
adantr
⊢
F
⁡
0
=
J
∧
F
⁡
1
=
K
→
I
⁡
F
⁡
0
=
I
⁡
J
9
8
sseq2d
⊢
F
⁡
0
=
J
∧
F
⁡
1
=
K
→
A
B
⊆
I
⁡
F
⁡
0
↔
A
B
⊆
I
⁡
J
10
fveq2
⊢
F
⁡
1
=
K
→
I
⁡
F
⁡
1
=
I
⁡
K
11
10
adantl
⊢
F
⁡
0
=
J
∧
F
⁡
1
=
K
→
I
⁡
F
⁡
1
=
I
⁡
K
12
11
sseq2d
⊢
F
⁡
0
=
J
∧
F
⁡
1
=
K
→
B
C
⊆
I
⁡
F
⁡
1
↔
B
C
⊆
I
⁡
K
13
9
12
anbi12d
⊢
F
⁡
0
=
J
∧
F
⁡
1
=
K
→
A
B
⊆
I
⁡
F
⁡
0
∧
B
C
⊆
I
⁡
F
⁡
1
↔
A
B
⊆
I
⁡
J
∧
B
C
⊆
I
⁡
K
14
6
13
syl
⊢
φ
→
A
B
⊆
I
⁡
F
⁡
0
∧
B
C
⊆
I
⁡
F
⁡
1
↔
A
B
⊆
I
⁡
J
∧
B
C
⊆
I
⁡
K
15
5
14
mpbird
⊢
φ
→
A
B
⊆
I
⁡
F
⁡
0
∧
B
C
⊆
I
⁡
F
⁡
1