Metamath Proof Explorer


Theorem 2wlklem

Description: Lemma for theorems for walks of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018)

Ref Expression
Assertion 2wlklem k 0 1 E F k = P k P k + 1 E F 0 = P 0 P 1 E F 1 = P 1 P 2

Proof

Step Hyp Ref Expression
1 c0ex 0 V
2 1ex 1 V
3 2fveq3 k = 0 E F k = E F 0
4 fveq2 k = 0 P k = P 0
5 fv0p1e1 k = 0 P k + 1 = P 1
6 4 5 preq12d k = 0 P k P k + 1 = P 0 P 1
7 3 6 eqeq12d k = 0 E F k = P k P k + 1 E F 0 = P 0 P 1
8 2fveq3 k = 1 E F k = E F 1
9 fveq2 k = 1 P k = P 1
10 oveq1 k = 1 k + 1 = 1 + 1
11 1p1e2 1 + 1 = 2
12 10 11 eqtrdi k = 1 k + 1 = 2
13 12 fveq2d k = 1 P k + 1 = P 2
14 9 13 preq12d k = 1 P k P k + 1 = P 1 P 2
15 8 14 eqeq12d k = 1 E F k = P k P k + 1 E F 1 = P 1 P 2
16 1 2 7 15 ralpr k 0 1 E F k = P k P k + 1 E F 0 = P 0 P 1 E F 1 = P 1 P 2