Metamath Proof Explorer


Theorem 2wspiundisj

Description: All simple paths of length 2 from a fixed vertex to another vertex are disjunct. (Contributed by Alexander van der Vekens, 5-Mar-2018) (Revised by AV, 14-May-2021) (Proof shortened by AV, 9-Jan-2022)

Ref Expression
Assertion 2wspiundisj DisjaVbVaa2WSPathsNOnGb

Proof

Step Hyp Ref Expression
1 oveq1 a=ca2WSPathsNOnGb=c2WSPathsNOnGb
2 oveq2 b=dc2WSPathsNOnGb=c2WSPathsNOnGd
3 sneq a=ca=c
4 3 difeq2d a=cVa=Vc
5 wspthneq1eq2 ta2WSPathsNOnGbtc2WSPathsNOnGda=cb=d
6 5 simpld ta2WSPathsNOnGbtc2WSPathsNOnGda=c
7 6 3adant1 ta2WSPathsNOnGbtc2WSPathsNOnGda=c
8 1 2 4 7 disjiund DisjaVbVaa2WSPathsNOnGb
9 8 mptru DisjaVbVaa2WSPathsNOnGb