Metamath Proof Explorer


Theorem 2wspiundisj

Description: All simple paths of length 2 from a fixed vertex to another vertex are disjunct. (Contributed by Alexander van der Vekens, 5-Mar-2018) (Revised by AV, 14-May-2021) (Proof shortened by AV, 9-Jan-2022)

Ref Expression
Assertion 2wspiundisj Disj a V b V a a 2 WSPathsNOn G b

Proof

Step Hyp Ref Expression
1 oveq1 a = c a 2 WSPathsNOn G b = c 2 WSPathsNOn G b
2 oveq2 b = d c 2 WSPathsNOn G b = c 2 WSPathsNOn G d
3 sneq a = c a = c
4 3 difeq2d a = c V a = V c
5 wspthneq1eq2 t a 2 WSPathsNOn G b t c 2 WSPathsNOn G d a = c b = d
6 5 simpld t a 2 WSPathsNOn G b t c 2 WSPathsNOn G d a = c
7 6 3adant1 t a 2 WSPathsNOn G b t c 2 WSPathsNOn G d a = c
8 1 2 4 7 disjiund Disj a V b V a a 2 WSPathsNOn G b
9 8 mptru Disj a V b V a a 2 WSPathsNOn G b