Metamath Proof Explorer


Theorem 2wspmdisj

Description: The sets of paths of length 2 with a given vertex in the middle are distinct for different vertices in the middle. (Contributed by Alexander van der Vekens, 11-Mar-2018) (Revised by AV, 18-May-2021) (Proof shortened by AV, 10-Jan-2022)

Ref Expression
Hypotheses frgrhash2wsp.v V = Vtx G
fusgreg2wsp.m M = a V w 2 WSPathsN G | w 1 = a
Assertion 2wspmdisj Disj x V M x

Proof

Step Hyp Ref Expression
1 frgrhash2wsp.v V = Vtx G
2 fusgreg2wsp.m M = a V w 2 WSPathsN G | w 1 = a
3 orc x = y x = y M x M y =
4 3 a1d x = y x V y V x = y M x M y =
5 1 2 fusgreg2wsplem y V t M y t 2 WSPathsN G t 1 = y
6 5 adantl x V y V t M y t 2 WSPathsN G t 1 = y
7 6 adantr x V y V t M x t M y t 2 WSPathsN G t 1 = y
8 1 2 fusgreg2wsplem x V t M x t 2 WSPathsN G t 1 = x
9 eqtr2 t 1 = x t 1 = y x = y
10 9 expcom t 1 = y t 1 = x x = y
11 10 adantl t 2 WSPathsN G t 1 = y t 1 = x x = y
12 11 com12 t 1 = x t 2 WSPathsN G t 1 = y x = y
13 12 adantl t 2 WSPathsN G t 1 = x t 2 WSPathsN G t 1 = y x = y
14 8 13 syl6bi x V t M x t 2 WSPathsN G t 1 = y x = y
15 14 adantr x V y V t M x t 2 WSPathsN G t 1 = y x = y
16 15 imp x V y V t M x t 2 WSPathsN G t 1 = y x = y
17 7 16 sylbid x V y V t M x t M y x = y
18 17 con3d x V y V t M x ¬ x = y ¬ t M y
19 18 impancom x V y V ¬ x = y t M x ¬ t M y
20 19 ralrimiv x V y V ¬ x = y t M x ¬ t M y
21 disj M x M y = t M x ¬ t M y
22 20 21 sylibr x V y V ¬ x = y M x M y =
23 22 olcd x V y V ¬ x = y x = y M x M y =
24 23 expcom ¬ x = y x V y V x = y M x M y =
25 4 24 pm2.61i x V y V x = y M x M y =
26 25 rgen2 x V y V x = y M x M y =
27 fveq2 x = y M x = M y
28 27 disjor Disj x V M x x V y V x = y M x M y =
29 26 28 mpbir Disj x V M x