Metamath Proof Explorer


Theorem 317prm

Description: 317 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 317prm 317

Proof

Step Hyp Ref Expression
1 3nn0 3 0
2 1nn0 1 0
3 1 2 deccl 31 0
4 7nn 7
5 3 4 decnncl 317
6 8nn0 8 0
7 4nn0 4 0
8 7nn0 7 0
9 3lt8 3 < 8
10 1lt10 1 < 10
11 7lt10 7 < 10
12 1 6 2 7 8 2 9 10 11 3decltc 317 < 841
13 1nn 1
14 1 13 decnncl 31
15 14 8 2 10 declti 1 < 317
16 3t2e6 3 2 = 6
17 df-7 7 = 6 + 1
18 3 1 16 17 dec2dvds ¬ 2 317
19 3nn 3
20 10nn0 10 0
21 5nn0 5 0
22 20 21 deccl 105 0
23 2nn 2
24 0nn0 0 0
25 2nn0 2 0
26 eqid 105 = 105
27 25 dec0h 2 = 02
28 eqid 10 = 10
29 ax-1cn 1
30 29 addid2i 0 + 1 = 1
31 2 dec0h 1 = 01
32 30 31 eqtri 0 + 1 = 01
33 3cn 3
34 33 mulid1i 3 1 = 3
35 00id 0 + 0 = 0
36 34 35 oveq12i 3 1 + 0 + 0 = 3 + 0
37 33 addid1i 3 + 0 = 3
38 36 37 eqtri 3 1 + 0 + 0 = 3
39 33 mul01i 3 0 = 0
40 39 oveq1i 3 0 + 1 = 0 + 1
41 40 30 eqtri 3 0 + 1 = 1
42 41 31 eqtri 3 0 + 1 = 01
43 2 24 24 2 28 32 1 2 24 38 42 decma2c 3 10 + 0 + 1 = 31
44 5cn 5
45 5t3e15 5 3 = 15
46 44 33 45 mulcomli 3 5 = 15
47 5p2e7 5 + 2 = 7
48 2 21 25 46 47 decaddi 3 5 + 2 = 17
49 20 21 24 25 26 27 1 8 2 43 48 decma2c 3 105 + 2 = 317
50 2lt3 2 < 3
51 19 22 23 49 50 ndvdsi ¬ 3 317
52 2lt5 2 < 5
53 3 23 52 47 dec5dvds2 ¬ 5 317
54 7 21 deccl 45 0
55 eqid 45 = 45
56 33 addid2i 0 + 3 = 3
57 56 oveq2i 7 4 + 0 + 3 = 7 4 + 3
58 7t4e28 7 4 = 28
59 2p1e3 2 + 1 = 3
60 8p3e11 8 + 3 = 11
61 25 6 1 58 59 2 60 decaddci 7 4 + 3 = 31
62 57 61 eqtri 7 4 + 0 + 3 = 31
63 7t5e35 7 5 = 35
64 1 21 25 63 47 decaddi 7 5 + 2 = 37
65 7 21 24 25 55 27 8 8 1 62 64 decma2c 7 45 + 2 = 317
66 2lt7 2 < 7
67 4 54 23 65 66 ndvdsi ¬ 7 317
68 2 13 decnncl 11
69 25 6 deccl 28 0
70 9nn 9
71 9nn0 9 0
72 eqid 28 = 28
73 71 dec0h 9 = 09
74 2 2 deccl 11 0
75 eqid 11 = 11
76 9cn 9
77 76 addid2i 0 + 9 = 9
78 77 73 eqtri 0 + 9 = 09
79 2cn 2
80 79 mulid2i 1 2 = 2
81 80 30 oveq12i 1 2 + 0 + 1 = 2 + 1
82 81 59 eqtri 1 2 + 0 + 1 = 3
83 80 oveq1i 1 2 + 9 = 2 + 9
84 9p2e11 9 + 2 = 11
85 76 79 84 addcomli 2 + 9 = 11
86 83 85 eqtri 1 2 + 9 = 11
87 2 2 24 71 75 78 25 2 2 82 86 decmac 11 2 + 0 + 9 = 31
88 8cn 8
89 88 mulid2i 1 8 = 8
90 89 30 oveq12i 1 8 + 0 + 1 = 8 + 1
91 8p1e9 8 + 1 = 9
92 90 91 eqtri 1 8 + 0 + 1 = 9
93 89 oveq1i 1 8 + 9 = 8 + 9
94 9p8e17 9 + 8 = 17
95 76 88 94 addcomli 8 + 9 = 17
96 93 95 eqtri 1 8 + 9 = 17
97 2 2 24 71 75 73 6 8 2 92 96 decmac 11 8 + 9 = 97
98 25 6 24 71 72 73 74 8 71 87 97 decma2c 11 28 + 9 = 317
99 9lt10 9 < 10
100 13 2 71 99 declti 9 < 11
101 68 69 70 98 100 ndvdsi ¬ 11 317
102 2 19 decnncl 13
103 25 7 deccl 24 0
104 5nn 5
105 eqid 24 = 24
106 21 dec0h 5 = 05
107 2 1 deccl 13 0
108 eqid 13 = 13
109 44 addid2i 0 + 5 = 5
110 109 106 eqtri 0 + 5 = 05
111 16 oveq1i 3 2 + 5 = 6 + 5
112 6p5e11 6 + 5 = 11
113 111 112 eqtri 3 2 + 5 = 11
114 2 1 24 21 108 110 25 2 2 82 113 decmac 13 2 + 0 + 5 = 31
115 4cn 4
116 115 mulid2i 1 4 = 4
117 116 30 oveq12i 1 4 + 0 + 1 = 4 + 1
118 4p1e5 4 + 1 = 5
119 117 118 eqtri 1 4 + 0 + 1 = 5
120 4t3e12 4 3 = 12
121 115 33 120 mulcomli 3 4 = 12
122 44 79 47 addcomli 2 + 5 = 7
123 2 25 21 121 122 decaddi 3 4 + 5 = 17
124 2 1 24 21 108 106 7 8 2 119 123 decmac 13 4 + 5 = 57
125 25 7 24 21 105 106 107 8 21 114 124 decma2c 13 24 + 5 = 317
126 5lt10 5 < 10
127 13 1 21 126 declti 5 < 13
128 102 103 104 125 127 ndvdsi ¬ 13 317
129 2 4 decnncl 17
130 2 6 deccl 18 0
131 eqid 18 = 18
132 2 8 deccl 17 0
133 eqid 17 = 17
134 3p1e4 3 + 1 = 4
135 33 29 134 addcomli 1 + 3 = 4
136 24 2 2 1 31 108 30 135 decadd 1 + 13 = 14
137 29 mulid1i 1 1 = 1
138 1p1e2 1 + 1 = 2
139 137 138 oveq12i 1 1 + 1 + 1 = 1 + 2
140 1p2e3 1 + 2 = 3
141 139 140 eqtri 1 1 + 1 + 1 = 3
142 7cn 7
143 142 mulid1i 7 1 = 7
144 143 oveq1i 7 1 + 4 = 7 + 4
145 7p4e11 7 + 4 = 11
146 144 145 eqtri 7 1 + 4 = 11
147 2 8 2 7 133 136 2 2 2 141 146 decmac 17 1 + 1 + 13 = 31
148 89 109 oveq12i 1 8 + 0 + 5 = 8 + 5
149 8p5e13 8 + 5 = 13
150 148 149 eqtri 1 8 + 0 + 5 = 13
151 6nn0 6 0
152 6p1e7 6 + 1 = 7
153 8t7e56 8 7 = 56
154 88 142 153 mulcomli 7 8 = 56
155 21 151 152 154 decsuc 7 8 + 1 = 57
156 2 8 24 2 133 31 6 8 21 150 155 decmac 17 8 + 1 = 137
157 2 6 2 2 131 75 132 8 107 147 156 decma2c 17 18 + 11 = 317
158 1lt7 1 < 7
159 2 2 4 158 declt 11 < 17
160 129 130 68 157 159 ndvdsi ¬ 17 317
161 2 70 decnncl 19
162 2 151 deccl 16 0
163 eqid 16 = 16
164 2 71 deccl 19 0
165 eqid 19 = 19
166 24 2 2 2 31 75 30 138 decadd 1 + 11 = 12
167 76 mulid1i 9 1 = 9
168 167 oveq1i 9 1 + 2 = 9 + 2
169 168 84 eqtri 9 1 + 2 = 11
170 2 71 2 25 165 166 2 2 2 141 169 decmac 19 1 + 1 + 11 = 31
171 1 dec0h 3 = 03
172 6cn 6
173 172 mulid2i 1 6 = 6
174 173 109 oveq12i 1 6 + 0 + 5 = 6 + 5
175 174 112 eqtri 1 6 + 0 + 5 = 11
176 9t6e54 9 6 = 54
177 4p3e7 4 + 3 = 7
178 21 7 1 176 177 decaddi 9 6 + 3 = 57
179 2 71 24 1 165 171 151 8 21 175 178 decmac 19 6 + 3 = 117
180 2 151 2 1 163 108 164 8 74 170 179 decma2c 19 16 + 13 = 317
181 3lt9 3 < 9
182 2 1 70 181 declt 13 < 19
183 161 162 102 180 182 ndvdsi ¬ 19 317
184 25 19 decnncl 23
185 102 nnnn0i 13 0
186 8nn 8
187 2 186 decnncl 18
188 25 1 deccl 23 0
189 eqid 23 = 23
190 7p1e8 7 + 1 = 8
191 142 29 190 addcomli 1 + 7 = 8
192 6 dec0h 8 = 08
193 191 192 eqtri 1 + 7 = 08
194 79 mulid1i 2 1 = 2
195 194 30 oveq12i 2 1 + 0 + 1 = 2 + 1
196 195 59 eqtri 2 1 + 0 + 1 = 3
197 34 oveq1i 3 1 + 8 = 3 + 8
198 88 33 60 addcomli 3 + 8 = 11
199 197 198 eqtri 3 1 + 8 = 11
200 25 1 24 6 189 193 2 2 2 196 199 decmac 23 1 + 1 + 7 = 31
201 33 79 16 mulcomli 2 3 = 6
202 201 30 oveq12i 2 3 + 0 + 1 = 6 + 1
203 202 152 eqtri 2 3 + 0 + 1 = 7
204 3t3e9 3 3 = 9
205 204 oveq1i 3 3 + 8 = 9 + 8
206 205 94 eqtri 3 3 + 8 = 17
207 25 1 24 6 189 192 1 8 2 203 206 decmac 23 3 + 8 = 77
208 2 1 2 6 108 131 188 8 8 200 207 decma2c 23 13 + 18 = 317
209 8lt10 8 < 10
210 1lt2 1 < 2
211 2 25 6 1 209 210 decltc 18 < 23
212 184 185 187 208 211 ndvdsi ¬ 23 317
213 5 12 15 18 51 53 67 101 128 160 183 212 prmlem2 317