Metamath Proof Explorer


Theorem 37prm

Description: 37 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 37prm 37

Proof

Step Hyp Ref Expression
1 3nn0 3 0
2 7nn 7
3 1 2 decnncl 37
4 8nn0 8 0
5 4nn0 4 0
6 4 5 deccl 84 0
7 7nn0 7 0
8 1nn0 1 0
9 7lt10 7 < 10
10 8nn 8
11 3lt10 3 < 10
12 10 5 1 11 declti 3 < 84
13 1 6 7 8 9 12 decltc 37 < 841
14 3nn 3
15 1lt10 1 < 10
16 14 7 8 15 declti 1 < 37
17 3t2e6 3 2 = 6
18 df-7 7 = 6 + 1
19 1 1 17 18 dec2dvds ¬ 2 37
20 2nn0 2 0
21 8 20 deccl 12 0
22 1nn 1
23 6nn0 6 0
24 6p1e7 6 + 1 = 7
25 eqid 12 = 12
26 0nn0 0 0
27 3cn 3
28 27 mulid1i 3 1 = 3
29 28 oveq1i 3 1 + 0 = 3 + 0
30 27 addid1i 3 + 0 = 3
31 29 30 eqtri 3 1 + 0 = 3
32 23 dec0h 6 = 06
33 17 32 eqtri 3 2 = 06
34 1 8 20 25 23 26 31 33 decmul2c 3 12 = 36
35 1 23 24 34 decsuc 3 12 + 1 = 37
36 1lt3 1 < 3
37 14 21 22 35 36 ndvdsi ¬ 3 37
38 2nn 2
39 2lt5 2 < 5
40 5p2e7 5 + 2 = 7
41 1 38 39 40 dec5dvds2 ¬ 5 37
42 5nn0 5 0
43 7t5e35 7 5 = 35
44 1 42 20 43 40 decaddi 7 5 + 2 = 37
45 2lt7 2 < 7
46 2 42 38 44 45 ndvdsi ¬ 7 37
47 8 22 decnncl 11
48 4nn 4
49 eqid 11 = 11
50 27 mulid2i 1 3 = 3
51 50 oveq1i 1 3 + 4 = 3 + 4
52 48 nncni 4
53 4p3e7 4 + 3 = 7
54 52 27 53 addcomli 3 + 4 = 7
55 51 54 eqtri 1 3 + 4 = 7
56 8 8 5 49 1 50 55 decrmanc 11 3 + 4 = 37
57 4lt10 4 < 10
58 22 8 5 57 declti 4 < 11
59 47 1 48 56 58 ndvdsi ¬ 11 37
60 8 14 decnncl 13
61 eqid 13 = 13
62 2cn 2
63 62 mulid2i 1 2 = 2
64 20 8 1 61 63 17 decmul1 13 2 = 26
65 2p1e3 2 + 1 = 3
66 20 23 8 8 64 49 65 24 decadd 13 2 + 11 = 37
67 8 8 14 36 declt 11 < 13
68 60 20 47 66 67 ndvdsi ¬ 13 37
69 8 2 decnncl 17
70 eqid 17 = 17
71 1 dec0h 3 = 03
72 0p1e1 0 + 1 = 1
73 63 72 oveq12i 1 2 + 0 + 1 = 2 + 1
74 73 65 eqtri 1 2 + 0 + 1 = 3
75 7t2e14 7 2 = 14
76 8 5 1 75 53 decaddi 7 2 + 3 = 17
77 8 7 26 1 70 71 20 7 8 74 76 decmac 17 2 + 3 = 37
78 22 7 1 11 declti 3 < 17
79 69 20 14 77 78 ndvdsi ¬ 17 37
80 9nn 9
81 8 80 decnncl 19
82 8 10 decnncl 18
83 9nn0 9 0
84 81 nncni 19
85 84 mulid1i 19 1 = 19
86 eqid 18 = 18
87 1p1e2 1 + 1 = 2
88 87 oveq1i 1 + 1 + 1 = 2 + 1
89 88 65 eqtri 1 + 1 + 1 = 3
90 9p8e17 9 + 8 = 17
91 8 83 8 4 85 86 89 7 90 decaddc 19 1 + 18 = 37
92 8lt9 8 < 9
93 8 4 80 92 declt 18 < 19
94 81 8 82 91 93 ndvdsi ¬ 19 37
95 20 14 decnncl 23
96 8 48 decnncl 14
97 95 nncni 23
98 97 mulid1i 23 1 = 23
99 eqid 14 = 14
100 20 1 8 5 98 99 65 54 decadd 23 1 + 14 = 37
101 1lt2 1 < 2
102 8 20 5 1 57 101 decltc 14 < 23
103 95 8 96 100 102 ndvdsi ¬ 23 37
104 3 13 16 19 37 41 46 59 68 79 94 103 prmlem2 37