Metamath Proof Explorer


Theorem 3adant2r

Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006) (Proof shortened by Wolf Lammen, 25-Jun-2022)

Ref Expression
Hypothesis ad4ant3.1 φ ψ χ θ
Assertion 3adant2r φ ψ τ χ θ

Proof

Step Hyp Ref Expression
1 ad4ant3.1 φ ψ χ θ
2 simpl ψ τ ψ
3 2 1 syl3an2 φ ψ τ χ θ