Metamath Proof Explorer


Theorem 3adantll2

Description: Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis 3adantll2.1 φ ψ χ θ τ
Assertion 3adantll2 φ η ψ χ θ τ

Proof

Step Hyp Ref Expression
1 3adantll2.1 φ ψ χ θ τ
2 simpll1 φ η ψ χ θ φ
3 simpll3 φ η ψ χ θ ψ
4 2 3 jca φ η ψ χ θ φ ψ
5 simplr φ η ψ χ θ χ
6 simpr φ η ψ χ θ θ
7 4 5 6 1 syl21anc φ η ψ χ θ τ