Metamath Proof Explorer


Theorem 3an1rs

Description: Swap conjuncts. (Contributed by NM, 16-Dec-2007) (Proof shortened by Wolf Lammen, 14-Apr-2022)

Ref Expression
Hypothesis 3an1rs.1 φ ψ χ θ τ
Assertion 3an1rs φ ψ θ χ τ

Proof

Step Hyp Ref Expression
1 3an1rs.1 φ ψ χ θ τ
2 1 3exp1 φ ψ χ θ τ
3 2 com34 φ ψ θ χ τ
4 3 3imp1 φ ψ θ χ τ