Metamath Proof Explorer


Theorem 3anandirs

Description: Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 25-Jul-2006)

Ref Expression
Hypothesis 3anandirs.1 φ θ ψ θ χ θ τ
Assertion 3anandirs φ ψ χ θ τ

Proof

Step Hyp Ref Expression
1 3anandirs.1 φ θ ψ θ χ θ τ
2 simpl1 φ ψ χ θ φ
3 simpr φ ψ χ θ θ
4 simpl2 φ ψ χ θ ψ
5 simpl3 φ ψ χ θ χ
6 2 3 4 3 5 3 1 syl222anc φ ψ χ θ τ