Metamath Proof Explorer


Theorem 3anidm12p2

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis 3anidm12p2.1 ψ φ φ χ
Assertion 3anidm12p2 φ ψ χ

Proof

Step Hyp Ref Expression
1 3anidm12p2.1 ψ φ φ χ
2 3anrot ψ φ φ φ φ ψ
3 2 1 sylbir φ φ ψ χ
4 3 3anidm12 φ ψ χ