Metamath Proof Explorer


Theorem 3anim123d

Description: Deduction joining 3 implications to form implication of conjunctions. (Contributed by NM, 24-Feb-2005)

Ref Expression
Hypotheses 3anim123d.1 φ ψ χ
3anim123d.2 φ θ τ
3anim123d.3 φ η ζ
Assertion 3anim123d φ ψ θ η χ τ ζ

Proof

Step Hyp Ref Expression
1 3anim123d.1 φ ψ χ
2 3anim123d.2 φ θ τ
3 3anim123d.3 φ η ζ
4 1 2 anim12d φ ψ θ χ τ
5 4 3 anim12d φ ψ θ η χ τ ζ
6 df-3an ψ θ η ψ θ η
7 df-3an χ τ ζ χ τ ζ
8 5 6 7 3imtr4g φ ψ θ η χ τ ζ