Metamath Proof Explorer


Theorem 3anor

Description: Triple conjunction expressed in terms of triple disjunction. (Contributed by Jeff Hankins, 15-Aug-2009) (Proof shortened by Wolf Lammen, 8-Apr-2022)

Ref Expression
Assertion 3anor φ ψ χ ¬ ¬ φ ¬ ψ ¬ χ

Proof

Step Hyp Ref Expression
1 3ianor ¬ φ ψ χ ¬ φ ¬ ψ ¬ χ
2 1 con1bii ¬ ¬ φ ¬ ψ ¬ χ φ ψ χ
3 2 bicomi φ ψ χ ¬ ¬ φ ¬ ψ ¬ χ