Metamath Proof Explorer


Theorem 3atlem1

Description: Lemma for 3at . (Contributed by NM, 22-Jun-2012)

Ref Expression
Hypotheses 3at.l ˙=K
3at.j ˙=joinK
3at.a A=AtomsK
Assertion 3atlem1 KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙R=S˙T˙U

Proof

Step Hyp Ref Expression
1 3at.l ˙=K
2 3at.j ˙=joinK
3 3at.a A=AtomsK
4 simp11 KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UKHL
5 simp131 KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙USA
6 simp132 KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UTA
7 simp133 KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UUA
8 2 3 hlatjass KHLSATAUAS˙T˙U=S˙T˙U
9 4 5 6 7 8 syl13anc KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙US˙T˙U=S˙T˙U
10 simp121 KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UPA
11 simp122 KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UQA
12 simp123 KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙URA
13 2 3 hlatjass KHLPAQARAP˙Q˙R=P˙Q˙R
14 4 10 11 12 13 syl13anc KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙R=P˙Q˙R
15 simp3 KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙R˙S˙T˙U
16 14 15 eqbrtrrd KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙R˙S˙T˙U
17 4 hllatd KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UKLat
18 eqid BaseK=BaseK
19 18 3 atbase PAPBaseK
20 10 19 syl KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UPBaseK
21 18 2 3 hlatjcl KHLQARAQ˙RBaseK
22 4 11 12 21 syl3anc KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UQ˙RBaseK
23 18 2 3 hlatjcl KHLSATAS˙TBaseK
24 4 5 6 23 syl3anc KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙US˙TBaseK
25 18 3 atbase UAUBaseK
26 7 25 syl KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UUBaseK
27 18 2 latjcl KLatS˙TBaseKUBaseKS˙T˙UBaseK
28 17 24 26 27 syl3anc KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙US˙T˙UBaseK
29 18 1 2 latjle12 KLatPBaseKQ˙RBaseKS˙T˙UBaseKP˙S˙T˙UQ˙R˙S˙T˙UP˙Q˙R˙S˙T˙U
30 17 20 22 28 29 syl13anc KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙S˙T˙UQ˙R˙S˙T˙UP˙Q˙R˙S˙T˙U
31 16 30 mpbird KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙S˙T˙UQ˙R˙S˙T˙U
32 31 simpld KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙S˙T˙U
33 32 9 breqtrd KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙S˙T˙U
34 18 2 3 hlatjcl KHLTAUAT˙UBaseK
35 4 6 7 34 syl3anc KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UT˙UBaseK
36 simp22 KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙U¬P˙T˙U
37 18 1 2 3 hlexchb2 KHLPASAT˙UBaseK¬P˙T˙UP˙S˙T˙UP˙T˙U=S˙T˙U
38 4 10 5 35 36 37 syl131anc KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙S˙T˙UP˙T˙U=S˙T˙U
39 33 38 mpbid KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙T˙U=S˙T˙U
40 2 3 hlatj12 KHLPATAUAP˙T˙U=T˙P˙U
41 4 10 6 7 40 syl13anc KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙T˙U=T˙P˙U
42 9 39 41 3eqtr2d KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙US˙T˙U=T˙P˙U
43 2 3 hlatj12 KHLPAQARAP˙Q˙R=Q˙P˙R
44 4 10 11 12 43 syl13anc KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙R=Q˙P˙R
45 16 44 42 3brtr3d KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UQ˙P˙R˙T˙P˙U
46 18 3 atbase QAQBaseK
47 11 46 syl KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UQBaseK
48 18 2 3 hlatjcl KHLPARAP˙RBaseK
49 4 10 12 48 syl3anc KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙RBaseK
50 18 3 atbase TATBaseK
51 6 50 syl KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UTBaseK
52 18 2 3 hlatjcl KHLPAUAP˙UBaseK
53 4 10 7 52 syl3anc KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙UBaseK
54 18 2 latjcl KLatTBaseKP˙UBaseKT˙P˙UBaseK
55 17 51 53 54 syl3anc KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UT˙P˙UBaseK
56 18 1 2 latjle12 KLatQBaseKP˙RBaseKT˙P˙UBaseKQ˙T˙P˙UP˙R˙T˙P˙UQ˙P˙R˙T˙P˙U
57 17 47 49 55 56 syl13anc KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UQ˙T˙P˙UP˙R˙T˙P˙UQ˙P˙R˙T˙P˙U
58 45 57 mpbird KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UQ˙T˙P˙UP˙R˙T˙P˙U
59 58 simpld KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UQ˙T˙P˙U
60 simp23 KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙U¬Q˙P˙U
61 18 1 2 3 hlexchb2 KHLQATAP˙UBaseK¬Q˙P˙UQ˙T˙P˙UQ˙P˙U=T˙P˙U
62 4 11 6 53 60 61 syl131anc KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UQ˙T˙P˙UQ˙P˙U=T˙P˙U
63 59 62 mpbid KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UQ˙P˙U=T˙P˙U
64 18 2 latj13 KLatQBaseKPBaseKUBaseKQ˙P˙U=U˙P˙Q
65 17 47 20 26 64 syl13anc KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UQ˙P˙U=U˙P˙Q
66 42 63 65 3eqtr2d KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙US˙T˙U=U˙P˙Q
67 18 2 3 hlatjcl KHLPAQAP˙QBaseK
68 4 10 11 67 syl3anc KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙QBaseK
69 18 3 atbase RARBaseK
70 12 69 syl KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙URBaseK
71 18 1 2 latjle12 KLatP˙QBaseKRBaseKS˙T˙UBaseKP˙Q˙S˙T˙UR˙S˙T˙UP˙Q˙R˙S˙T˙U
72 17 68 70 28 71 syl13anc KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙S˙T˙UR˙S˙T˙UP˙Q˙R˙S˙T˙U
73 15 72 mpbird KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙S˙T˙UR˙S˙T˙U
74 73 simprd KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UR˙S˙T˙U
75 74 66 breqtrd KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UR˙U˙P˙Q
76 simp21 KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙U¬R˙P˙Q
77 18 1 2 3 hlexchb2 KHLRAUAP˙QBaseK¬R˙P˙QR˙U˙P˙QR˙P˙Q=U˙P˙Q
78 4 12 7 68 76 77 syl131anc KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UR˙U˙P˙QR˙P˙Q=U˙P˙Q
79 75 78 mpbid KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UR˙P˙Q=U˙P˙Q
80 18 2 latjcom KLatRBaseKP˙QBaseKR˙P˙Q=P˙Q˙R
81 17 70 68 80 syl3anc KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UR˙P˙Q=P˙Q˙R
82 66 79 81 3eqtr2rd KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙R=S˙T˙U