Metamath Proof Explorer


Theorem 3atnelvolN

Description: The join of 3 atoms is not a lattice volume. (Contributed by NM, 17-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 3atnelvol.j ˙ = join K
3atnelvol.a A = Atoms K
3atnelvol.v V = LVols K
Assertion 3atnelvolN K HL P A Q A R A ¬ P ˙ Q ˙ R V

Proof

Step Hyp Ref Expression
1 3atnelvol.j ˙ = join K
2 3atnelvol.a A = Atoms K
3 3atnelvol.v V = LVols K
4 hllat K HL K Lat
5 4 adantr K HL P A Q A R A K Lat
6 eqid Base K = Base K
7 6 1 2 hlatjcl K HL P A Q A P ˙ Q Base K
8 7 3adant3r3 K HL P A Q A R A P ˙ Q Base K
9 simpr3 K HL P A Q A R A R A
10 6 2 atbase R A R Base K
11 9 10 syl K HL P A Q A R A R Base K
12 6 1 latjcl K Lat P ˙ Q Base K R Base K P ˙ Q ˙ R Base K
13 5 8 11 12 syl3anc K HL P A Q A R A P ˙ Q ˙ R Base K
14 eqid K = K
15 6 14 latref K Lat P ˙ Q ˙ R Base K P ˙ Q ˙ R K P ˙ Q ˙ R
16 5 13 15 syl2anc K HL P A Q A R A P ˙ Q ˙ R K P ˙ Q ˙ R
17 14 1 2 3 lvolnle3at K HL P ˙ Q ˙ R V P A Q A R A ¬ P ˙ Q ˙ R K P ˙ Q ˙ R
18 17 an32s K HL P A Q A R A P ˙ Q ˙ R V ¬ P ˙ Q ˙ R K P ˙ Q ˙ R
19 18 ex K HL P A Q A R A P ˙ Q ˙ R V ¬ P ˙ Q ˙ R K P ˙ Q ˙ R
20 16 19 mt2d K HL P A Q A R A ¬ P ˙ Q ˙ R V