Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Abbreviated conjunction and disjunction of three wff's
3bior2fd
Metamath Proof Explorer
Description: A wff is equivalent to its threefold disjunction with double falsehood,
analogous to biorf . (Contributed by Alexander van der Vekens , 8-Sep-2017)
Ref
Expression
Hypotheses
3biorfd.1
⊢ φ → ¬ θ
3biorfd.2
⊢ φ → ¬ χ
Assertion
3bior2fd
⊢ φ → ψ ↔ θ ∨ χ ∨ ψ
Proof
Step
Hyp
Ref
Expression
1
3biorfd.1
⊢ φ → ¬ θ
2
3biorfd.2
⊢ φ → ¬ χ
3
biorf
⊢ ¬ χ → ψ ↔ χ ∨ ψ
4
2 3
syl
⊢ φ → ψ ↔ χ ∨ ψ
5
1
3bior1fd
⊢ φ → χ ∨ ψ ↔ θ ∨ χ ∨ ψ
6
4 5
bitrd
⊢ φ → ψ ↔ θ ∨ χ ∨ ψ