Metamath Proof Explorer


Theorem 3bitr3g

Description: More general version of 3bitr3i . Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995)

Ref Expression
Hypotheses 3bitr3g.1 φ ψ χ
3bitr3g.2 ψ θ
3bitr3g.3 χ τ
Assertion 3bitr3g φ θ τ

Proof

Step Hyp Ref Expression
1 3bitr3g.1 φ ψ χ
2 3bitr3g.2 ψ θ
3 3bitr3g.3 χ τ
4 2 1 bitr3id φ θ χ
5 4 3 bitrdi φ θ τ