Metamath Proof Explorer


Theorem 3bitrd

Description: Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999)

Ref Expression
Hypotheses 3bitrd.1 φ ψ χ
3bitrd.2 φ χ θ
3bitrd.3 φ θ τ
Assertion 3bitrd φ ψ τ

Proof

Step Hyp Ref Expression
1 3bitrd.1 φ ψ χ
2 3bitrd.2 φ χ θ
3 3bitrd.3 φ θ τ
4 1 2 bitrd φ ψ θ
5 4 3 bitrd φ ψ τ