Metamath Proof Explorer


Theorem 3bitrrd

Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006)

Ref Expression
Hypotheses 3bitrd.1 φ ψ χ
3bitrd.2 φ χ θ
3bitrd.3 φ θ τ
Assertion 3bitrrd φ τ ψ

Proof

Step Hyp Ref Expression
1 3bitrd.1 φ ψ χ
2 3bitrd.2 φ χ θ
3 3bitrd.3 φ θ τ
4 1 2 bitr2d φ θ ψ
5 3 4 bitr3d φ τ ψ