Metamath Proof Explorer


Theorem 3brtr4g

Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997)

Ref Expression
Hypotheses 3brtr4g.1 φ A R B
3brtr4g.2 C = A
3brtr4g.3 D = B
Assertion 3brtr4g φ C R D

Proof

Step Hyp Ref Expression
1 3brtr4g.1 φ A R B
2 3brtr4g.2 C = A
3 3brtr4g.3 D = B
4 2 3 breq12i C R D A R B
5 1 4 sylibr φ C R D