Metamath Proof Explorer


Theorem 3com23

Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996) (Proof shortened by Wolf Lammen, 9-Apr-2022)

Ref Expression
Hypothesis 3exp.1 φ ψ χ θ
Assertion 3com23 φ χ ψ θ

Proof

Step Hyp Ref Expression
1 3exp.1 φ ψ χ θ
2 1 3comr χ φ ψ θ
3 2 3com12 φ χ ψ θ