Metamath Proof Explorer


Theorem 3cshw

Description: Cyclically shifting a word three times results in a once cyclically shifted word under certain circumstances. (Contributed by AV, 6-Jun-2018) (Revised by AV, 1-Nov-2018)

Ref Expression
Assertion 3cshw W Word V N M W cyclShift N = W cyclShift M cyclShift N cyclShift W M

Proof

Step Hyp Ref Expression
1 2cshwid W Word V M W cyclShift M cyclShift W M = W
2 1 3adant2 W Word V N M W cyclShift M cyclShift W M = W
3 2 eqcomd W Word V N M W = W cyclShift M cyclShift W M
4 3 oveq1d W Word V N M W cyclShift N = W cyclShift M cyclShift W M cyclShift N
5 cshwcl W Word V W cyclShift M Word V
6 5 3ad2ant1 W Word V N M W cyclShift M Word V
7 lencl W Word V W 0
8 7 nn0zd W Word V W
9 zsubcl W M W M
10 8 9 sylan W Word V M W M
11 10 3adant2 W Word V N M W M
12 simp2 W Word V N M N
13 2cshwcom W cyclShift M Word V W M N W cyclShift M cyclShift W M cyclShift N = W cyclShift M cyclShift N cyclShift W M
14 6 11 12 13 syl3anc W Word V N M W cyclShift M cyclShift W M cyclShift N = W cyclShift M cyclShift N cyclShift W M
15 4 14 eqtrd W Word V N M W cyclShift N = W cyclShift M cyclShift N cyclShift W M