| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3nn |  | 
						
							| 2 | 1 | a1i |  | 
						
							| 3 |  | 3nn0 |  | 
						
							| 4 | 3 | a1i |  | 
						
							| 5 | 2 4 | nnexpcld |  | 
						
							| 6 | 5 | pm2.18i |  | 
						
							| 7 |  | nnq |  | 
						
							| 8 | 6 7 | mp1i |  | 
						
							| 9 |  | qexpcl |  | 
						
							| 10 | 3 9 | mpan2 |  | 
						
							| 11 |  | qmulcl |  | 
						
							| 12 | 8 10 11 | syl2anc |  | 
						
							| 13 |  | 1nn |  | 
						
							| 14 |  | nnq |  | 
						
							| 15 | 13 14 | ax-mp |  | 
						
							| 16 |  | qsubcl |  | 
						
							| 17 | 12 15 16 | sylancl |  | 
						
							| 18 |  | qsqcl |  | 
						
							| 19 |  | qmulcl |  | 
						
							| 20 | 8 18 19 | syl2anc |  | 
						
							| 21 |  | nnq |  | 
						
							| 22 | 1 21 | ax-mp |  | 
						
							| 23 |  | qsqcl |  | 
						
							| 24 | 22 23 | mp1i |  | 
						
							| 25 |  | qmulcl |  | 
						
							| 26 | 24 25 | mpancom |  | 
						
							| 27 |  | qaddcl |  | 
						
							| 28 | 20 26 27 | syl2anc |  | 
						
							| 29 |  | qaddcl |  | 
						
							| 30 | 28 22 29 | sylancl |  | 
						
							| 31 |  | id |  | 
						
							| 32 | 31 | 3cubeslem2 |  | 
						
							| 33 | 32 | neqned |  | 
						
							| 34 |  | qdivcl |  | 
						
							| 35 | 17 30 33 34 | syl3anc |  | 
						
							| 36 |  | qnegcl |  | 
						
							| 37 | 12 36 | syl |  | 
						
							| 38 |  | qaddcl |  | 
						
							| 39 | 37 26 38 | syl2anc |  | 
						
							| 40 |  | qaddcl |  | 
						
							| 41 | 39 15 40 | sylancl |  | 
						
							| 42 |  | qdivcl |  | 
						
							| 43 | 41 30 33 42 | syl3anc |  | 
						
							| 44 |  | qdivcl |  | 
						
							| 45 | 28 30 33 44 | syl3anc |  | 
						
							| 46 | 31 | 3cubeslem4 |  | 
						
							| 47 |  | oveq1 |  | 
						
							| 48 | 47 | oveq1d |  | 
						
							| 49 | 48 | oveq1d |  | 
						
							| 50 | 49 | eqeq2d |  | 
						
							| 51 |  | oveq1 |  | 
						
							| 52 | 51 | oveq2d |  | 
						
							| 53 | 52 | oveq1d |  | 
						
							| 54 | 53 | eqeq2d |  | 
						
							| 55 |  | oveq1 |  | 
						
							| 56 | 55 | oveq2d |  | 
						
							| 57 | 56 | eqeq2d |  | 
						
							| 58 | 50 54 57 | rspc3ev |  | 
						
							| 59 | 35 43 45 46 58 | syl31anc |  | 
						
							| 60 |  | 3anass |  | 
						
							| 61 |  | qexpcl |  | 
						
							| 62 | 3 61 | mpan2 |  | 
						
							| 63 |  | simprl |  | 
						
							| 64 |  | qexpcl |  | 
						
							| 65 | 63 3 64 | sylancl |  | 
						
							| 66 |  | qaddcl |  | 
						
							| 67 | 62 65 66 | syl2an2r |  | 
						
							| 68 |  | simprr |  | 
						
							| 69 |  | qexpcl |  | 
						
							| 70 | 68 3 69 | sylancl |  | 
						
							| 71 |  | qaddcl |  | 
						
							| 72 | 67 70 71 | syl2anc |  | 
						
							| 73 |  | eleq1a |  | 
						
							| 74 | 72 73 | syl |  | 
						
							| 75 | 74 | a1i |  | 
						
							| 76 | 60 75 | biimtrid |  | 
						
							| 77 | 76 | rexlimdv3d |  | 
						
							| 78 | 77 | mptru |  | 
						
							| 79 | 59 78 | impbii |  |