Metamath Proof Explorer


Theorem 3cubeslem1

Description: Lemma for 3cubes . (Contributed by Igor Ieskov, 22-Jan-2024)

Ref Expression
Hypothesis 3cubeslem1.a φ A
Assertion 3cubeslem1 φ 0 < A + 1 2 A

Proof

Step Hyp Ref Expression
1 3cubeslem1.a φ A
2 qre A A
3 1 2 syl φ A
4 0red φ 0
5 3 4 lttri4d φ A < 0 A = 0 0 < A
6 simpl A A < 0 A
7 0red A A < 0 0
8 peano2re A A + 1
9 8 adantr A A < 0 A + 1
10 9 resqcld A A < 0 A + 1 2
11 simpr A A < 0 A < 0
12 9 sqge0d A A < 0 0 A + 1 2
13 6 7 10 11 12 ltletrd A A < 0 A < A + 1 2
14 13 a1i φ A A < 0 A < A + 1 2
15 3 14 mpand φ A < 0 A < A + 1 2
16 0lt1 0 < 1
17 16 a1i A = 0 0 < 1
18 id A = 0 A = 0
19 sq1 1 2 = 1
20 19 a1i A = 0 1 2 = 1
21 17 18 20 3brtr4d A = 0 A < 1 2
22 0cnd A = 0 0
23 1cnd A = 0 1
24 18 oveq1d A = 0 A + 1 = 0 + 1
25 22 23 24 comraddd A = 0 A + 1 = 1 + 0
26 1p0e1 1 + 0 = 1
27 25 26 syl6eq A = 0 A + 1 = 1
28 27 oveq1d A = 0 A + 1 2 = 1 2
29 21 28 breqtrrd A = 0 A < A + 1 2
30 29 a1i φ A = 0 A < A + 1 2
31 ax-1rid A A 1 = A
32 31 adantr A 0 < A A 1 = A
33 simpl A 0 < A A
34 1red A 0 < A 1
35 33 34 readdcld A 0 < A A + 1
36 simpr A 0 < A 0 < A
37 0red A 0 < A 0
38 ltle 0 A 0 < A 0 A
39 37 33 38 syl2anc A 0 < A 0 < A 0 A
40 33 ltp1d A 0 < A A < A + 1
41 39 40 jctird A 0 < A 0 < A 0 A A < A + 1
42 36 41 mpd A 0 < A 0 A A < A + 1
43 34 35 jca A 0 < A 1 A + 1
44 0le1 0 1
45 44 a1i A 0 < A 0 1
46 1e0p1 1 = 0 + 1
47 37 33 34 36 ltadd1dd A 0 < A 0 + 1 < A + 1
48 46 47 eqbrtrid A 0 < A 1 < A + 1
49 43 45 48 jca32 A 0 < A 1 A + 1 0 1 1 < A + 1
50 ltmul12a A A + 1 0 A A < A + 1 1 A + 1 0 1 1 < A + 1 A 1 < A + 1 A + 1
51 33 35 42 49 50 syl1111anc A 0 < A A 1 < A + 1 A + 1
52 32 51 eqbrtrrd A 0 < A A < A + 1 A + 1
53 35 recnd A 0 < A A + 1
54 53 sqvald A 0 < A A + 1 2 = A + 1 A + 1
55 52 54 breqtrrd A 0 < A A < A + 1 2
56 55 a1i φ A 0 < A A < A + 1 2
57 3 56 mpand φ 0 < A A < A + 1 2
58 15 30 57 3jaod φ A < 0 A = 0 0 < A A < A + 1 2
59 5 58 mpd φ A < A + 1 2
60 3 8 syl φ A + 1
61 60 resqcld φ A + 1 2
62 3 61 posdifd φ A < A + 1 2 0 < A + 1 2 A
63 59 62 mpbid φ 0 < A + 1 2 A