Metamath Proof Explorer


Theorem 3cycld

Description: Construction of a 3-cycle from three given edges in a graph. (Contributed by Alexander van der Vekens, 13-Nov-2017) (Revised by AV, 10-Feb-2021) (Revised by AV, 24-Mar-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypotheses 3wlkd.p P=⟨“ABCD”⟩
3wlkd.f F=⟨“JKL”⟩
3wlkd.s φAVBVCVDV
3wlkd.n φABACBCBDCD
3wlkd.e φABIJBCIKCDIL
3wlkd.v V=VtxG
3wlkd.i I=iEdgG
3trld.n φJKJLKL
3cycld.e φA=D
Assertion 3cycld φFCyclesGP

Proof

Step Hyp Ref Expression
1 3wlkd.p P=⟨“ABCD”⟩
2 3wlkd.f F=⟨“JKL”⟩
3 3wlkd.s φAVBVCVDV
4 3wlkd.n φABACBCBDCD
5 3wlkd.e φABIJBCIKCDIL
6 3wlkd.v V=VtxG
7 3wlkd.i I=iEdgG
8 3trld.n φJKJLKL
9 3cycld.e φA=D
10 1 2 3 4 5 6 7 8 3pthd φFPathsGP
11 1 fveq1i P0=⟨“ABCD”⟩0
12 s4fv0 AV⟨“ABCD”⟩0=A
13 11 12 eqtrid AVP0=A
14 13 ad3antrrr AVBVCVDVA=DP0=A
15 simpr AVBVCVDVA=DA=D
16 2 fveq2i F=⟨“JKL”⟩
17 s3len ⟨“JKL”⟩=3
18 16 17 eqtri F=3
19 1 18 fveq12i PF=⟨“ABCD”⟩3
20 s4fv3 DV⟨“ABCD”⟩3=D
21 19 20 eqtr2id DVD=PF
22 21 adantl CVDVD=PF
23 22 ad2antlr AVBVCVDVA=DD=PF
24 14 15 23 3eqtrd AVBVCVDVA=DP0=PF
25 3 9 24 syl2anc φP0=PF
26 iscycl FCyclesGPFPathsGPP0=PF
27 10 25 26 sylanbrc φFCyclesGP