Metamath Proof Explorer


Theorem 3cyclfrgrrn

Description: Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 16-Nov-2017) (Revised by AV, 2-Apr-2021)

Ref Expression
Hypotheses 3cyclfrgrrn1.v V = Vtx G
3cyclfrgrrn1.e E = Edg G
Assertion 3cyclfrgrrn G FriendGraph 1 < V a V b V c V a b E b c E c a E

Proof

Step Hyp Ref Expression
1 3cyclfrgrrn1.v V = Vtx G
2 3cyclfrgrrn1.e E = Edg G
3 1 fvexi V V
4 hashgt12el2 V V 1 < V a V x V a x
5 3 4 mp3an1 1 < V a V x V a x
6 simpr x V a x a V G FriendGraph G FriendGraph
7 pm3.22 x V a V a V x V
8 7 3adant2 x V a x a V a V x V
9 8 adantr x V a x a V G FriendGraph a V x V
10 simpl2 x V a x a V G FriendGraph a x
11 1 2 3cyclfrgrrn1 G FriendGraph a V x V a x b V c V a b E b c E c a E
12 6 9 10 11 syl3anc x V a x a V G FriendGraph b V c V a b E b c E c a E
13 12 3exp1 x V a x a V G FriendGraph b V c V a b E b c E c a E
14 13 rexlimiv x V a x a V G FriendGraph b V c V a b E b c E c a E
15 5 14 syl 1 < V a V a V G FriendGraph b V c V a b E b c E c a E
16 15 expcom a V 1 < V a V G FriendGraph b V c V a b E b c E c a E
17 16 pm2.43a a V 1 < V G FriendGraph b V c V a b E b c E c a E
18 17 com13 G FriendGraph 1 < V a V b V c V a b E b c E c a E
19 18 imp G FriendGraph 1 < V a V b V c V a b E b c E c a E
20 19 ralrimiv G FriendGraph 1 < V a V b V c V a b E b c E c a E