| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3dec.a |  | 
						
							| 2 |  | 3dec.b |  | 
						
							| 3 |  | dfdec10 | Could not format  ; ; A B C = ( ( ; 1 0 x. ; A B ) + C ) : No typesetting found for |- ; ; A B C = ( ( ; 1 0 x. ; A B ) + C ) with typecode |- | 
						
							| 4 |  | dfdec10 | Could not format  ; A B = ( ( ; 1 0 x. A ) + B ) : No typesetting found for |- ; A B = ( ( ; 1 0 x. A ) + B ) with typecode |- | 
						
							| 5 | 4 | oveq2i | Could not format  ( ; 1 0 x. ; A B ) = ( ; 1 0 x. ( ( ; 1 0 x. A ) + B ) ) : No typesetting found for |- ( ; 1 0 x. ; A B ) = ( ; 1 0 x. ( ( ; 1 0 x. A ) + B ) ) with typecode |- | 
						
							| 6 |  | 10nn |  | 
						
							| 7 | 6 | nncni |  | 
						
							| 8 | 1 | nn0cni |  | 
						
							| 9 | 7 8 | mulcli |  | 
						
							| 10 | 2 | nn0cni |  | 
						
							| 11 | 7 9 10 | adddii |  | 
						
							| 12 | 5 11 | eqtri | Could not format  ( ; 1 0 x. ; A B ) = ( ( ; 1 0 x. ( ; 1 0 x. A ) ) + ( ; 1 0 x. B ) ) : No typesetting found for |- ( ; 1 0 x. ; A B ) = ( ( ; 1 0 x. ( ; 1 0 x. A ) ) + ( ; 1 0 x. B ) ) with typecode |- | 
						
							| 13 | 7 7 8 | mulassi |  | 
						
							| 14 | 13 | eqcomi |  | 
						
							| 15 | 7 | sqvali |  | 
						
							| 16 | 15 | eqcomi |  | 
						
							| 17 | 16 | oveq1i |  | 
						
							| 18 | 14 17 | eqtri |  | 
						
							| 19 | 18 | oveq1i |  | 
						
							| 20 | 12 19 | eqtri | Could not format  ( ; 1 0 x. ; A B ) = ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) : No typesetting found for |- ( ; 1 0 x. ; A B ) = ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) with typecode |- | 
						
							| 21 | 20 | oveq1i | Could not format  ( ( ; 1 0 x. ; A B ) + C ) = ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) : No typesetting found for |- ( ( ; 1 0 x. ; A B ) + C ) = ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) with typecode |- | 
						
							| 22 | 3 21 | eqtri | Could not format  ; ; A B C = ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) : No typesetting found for |- ; ; A B C = ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) with typecode |- |