Metamath Proof Explorer


Theorem 3dec

Description: A "decimal constructor" which is used to build up "decimal integers" or "numeric terms" in base 10 with 3 "digits". (Contributed by AV, 14-Jun-2021) (Revised by AV, 1-Aug-2021)

Ref Expression
Hypotheses 3dec.a A 0
3dec.b B 0
Assertion 3dec Could not format assertion : No typesetting found for |- ; ; A B C = ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) with typecode |-

Proof

Step Hyp Ref Expression
1 3dec.a A 0
2 3dec.b B 0
3 dfdec10 Could not format ; ; A B C = ( ( ; 1 0 x. ; A B ) + C ) : No typesetting found for |- ; ; A B C = ( ( ; 1 0 x. ; A B ) + C ) with typecode |-
4 dfdec10 Could not format ; A B = ( ( ; 1 0 x. A ) + B ) : No typesetting found for |- ; A B = ( ( ; 1 0 x. A ) + B ) with typecode |-
5 4 oveq2i Could not format ( ; 1 0 x. ; A B ) = ( ; 1 0 x. ( ( ; 1 0 x. A ) + B ) ) : No typesetting found for |- ( ; 1 0 x. ; A B ) = ( ; 1 0 x. ( ( ; 1 0 x. A ) + B ) ) with typecode |-
6 10nn 10
7 6 nncni 10
8 1 nn0cni A
9 7 8 mulcli 10 A
10 2 nn0cni B
11 7 9 10 adddii 10 10 A + B = 10 10 A + 10 B
12 5 11 eqtri Could not format ( ; 1 0 x. ; A B ) = ( ( ; 1 0 x. ( ; 1 0 x. A ) ) + ( ; 1 0 x. B ) ) : No typesetting found for |- ( ; 1 0 x. ; A B ) = ( ( ; 1 0 x. ( ; 1 0 x. A ) ) + ( ; 1 0 x. B ) ) with typecode |-
13 7 7 8 mulassi 10 10 A = 10 10 A
14 13 eqcomi 10 10 A = 10 10 A
15 7 sqvali 10 2 = 10 10
16 15 eqcomi 10 10 = 10 2
17 16 oveq1i 10 10 A = 10 2 A
18 14 17 eqtri 10 10 A = 10 2 A
19 18 oveq1i 10 10 A + 10 B = 10 2 A + 10 B
20 12 19 eqtri Could not format ( ; 1 0 x. ; A B ) = ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) : No typesetting found for |- ( ; 1 0 x. ; A B ) = ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) with typecode |-
21 20 oveq1i Could not format ( ( ; 1 0 x. ; A B ) + C ) = ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) : No typesetting found for |- ( ( ; 1 0 x. ; A B ) + C ) = ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) with typecode |-
22 3 21 eqtri Could not format ; ; A B C = ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) : No typesetting found for |- ; ; A B C = ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) with typecode |-