Step |
Hyp |
Ref |
Expression |
1 |
|
3dim0.j |
|
2 |
|
3dim0.l |
|
3 |
|
3dim0.a |
|
4 |
|
eqid |
|
5 |
1 4 3
|
athgt |
|
6 |
|
df-3an |
|
7 |
|
simpll1 |
|
8 |
|
eqid |
|
9 |
8 1 3
|
hlatjcl |
|
10 |
9
|
ad2antrr |
|
11 |
|
simplr |
|
12 |
8 2 1 4 3
|
cvr1 |
|
13 |
7 10 11 12
|
syl3anc |
|
14 |
13
|
anbi2d |
|
15 |
7
|
hllatd |
|
16 |
8 3
|
atbase |
|
17 |
16
|
ad2antlr |
|
18 |
8 1
|
latjcl |
|
19 |
15 10 17 18
|
syl3anc |
|
20 |
|
simpr |
|
21 |
8 2 1 4 3
|
cvr1 |
|
22 |
7 19 20 21
|
syl3anc |
|
23 |
14 22
|
anbi12d |
|
24 |
6 23
|
syl5bb |
|
25 |
24
|
rexbidva |
|
26 |
|
r19.42v |
|
27 |
|
anass |
|
28 |
26 27
|
bitri |
|
29 |
25 28
|
bitrdi |
|
30 |
29
|
rexbidva |
|
31 |
|
r19.42v |
|
32 |
30 31
|
bitrdi |
|
33 |
1 4 3
|
atcvr1 |
|
34 |
33
|
anbi1d |
|
35 |
32 34
|
bitrd |
|
36 |
35
|
3expb |
|
37 |
36
|
2rexbidva |
|
38 |
5 37
|
mpbird |
|