Step |
Hyp |
Ref |
Expression |
1 |
|
3dim0.j |
|
2 |
|
3dim0.l |
|
3 |
|
3dim0.a |
|
4 |
1 2 3
|
3dim0 |
|
5 |
4
|
adantr |
|
6 |
|
simpl2 |
|
7 |
1 2 3
|
3dimlem1 |
|
8 |
7
|
3ad2antl3 |
|
9 |
1 2 3
|
3dim1lem5 |
|
10 |
6 8 9
|
syl2anc |
|
11 |
|
simp13 |
|
12 |
|
simp22 |
|
13 |
|
simp23 |
|
14 |
11 12 13
|
3jca |
|
15 |
14
|
ad2antrr |
|
16 |
|
simpll1 |
|
17 |
|
simp21 |
|
18 |
|
simp32 |
|
19 |
|
simp33 |
|
20 |
17 18 19
|
3jca |
|
21 |
20
|
ad2antrr |
|
22 |
|
simplr |
|
23 |
|
simpr |
|
24 |
1 2 3
|
3dimlem2 |
|
25 |
16 21 22 23 24
|
syl112anc |
|
26 |
1 2 3
|
3dim1lem5 |
|
27 |
15 25 26
|
syl2anc |
|
28 |
11 17 13
|
3jca |
|
29 |
28
|
ad2antrr |
|
30 |
|
simp1 |
|
31 |
17 12
|
jca |
|
32 |
|
simp31 |
|
33 |
32 19
|
jca |
|
34 |
30 31 33
|
3jca |
|
35 |
34
|
ad2antrr |
|
36 |
|
simplrl |
|
37 |
|
simplrr |
|
38 |
|
simpr |
|
39 |
1 2 3
|
3dimlem3 |
|
40 |
35 36 37 38 39
|
syl13anc |
|
41 |
1 2 3
|
3dim1lem5 |
|
42 |
29 40 41
|
syl2anc |
|
43 |
11 17 12
|
3jca |
|
44 |
43
|
ad2antrr |
|
45 |
|
simpl1 |
|
46 |
|
simpl21 |
|
47 |
|
simpl22 |
|
48 |
46 47
|
jca |
|
49 |
|
simpl31 |
|
50 |
|
simpl32 |
|
51 |
49 50
|
jca |
|
52 |
45 48 51
|
3jca |
|
53 |
52
|
adantr |
|
54 |
|
simplr |
|
55 |
|
simpr |
|
56 |
1 2 3
|
3dimlem4 |
|
57 |
53 54 55 56
|
syl3anc |
|
58 |
1 2 3
|
3dim1lem5 |
|
59 |
44 57 58
|
syl2anc |
|
60 |
42 59
|
pm2.61dan |
|
61 |
60
|
anassrs |
|
62 |
27 61
|
pm2.61dan |
|
63 |
10 62
|
pm2.61dane |
|
64 |
63
|
3exp |
|
65 |
64
|
3expd |
|
66 |
65
|
3exp |
|
67 |
66
|
imp43 |
|
68 |
67
|
impd |
|
69 |
68
|
rexlimdvv |
|
70 |
69
|
rexlimdvva |
|
71 |
5 70
|
mpd |
|