Metamath Proof Explorer


Theorem 3dim1lem5

Description: Lemma for 3dim1 . (Contributed by NM, 26-Jul-2012)

Ref Expression
Hypotheses 3dim0.j ˙ = join K
3dim0.l ˙ = K
3dim0.a A = Atoms K
Assertion 3dim1lem5 u A v A w A P u ¬ v ˙ P ˙ u ¬ w ˙ P ˙ u ˙ v q A r A s A P q ¬ r ˙ P ˙ q ¬ s ˙ P ˙ q ˙ r

Proof

Step Hyp Ref Expression
1 3dim0.j ˙ = join K
2 3dim0.l ˙ = K
3 3dim0.a A = Atoms K
4 neeq2 q = u P q P u
5 oveq2 q = u P ˙ q = P ˙ u
6 5 breq2d q = u r ˙ P ˙ q r ˙ P ˙ u
7 6 notbid q = u ¬ r ˙ P ˙ q ¬ r ˙ P ˙ u
8 5 oveq1d q = u P ˙ q ˙ r = P ˙ u ˙ r
9 8 breq2d q = u s ˙ P ˙ q ˙ r s ˙ P ˙ u ˙ r
10 9 notbid q = u ¬ s ˙ P ˙ q ˙ r ¬ s ˙ P ˙ u ˙ r
11 4 7 10 3anbi123d q = u P q ¬ r ˙ P ˙ q ¬ s ˙ P ˙ q ˙ r P u ¬ r ˙ P ˙ u ¬ s ˙ P ˙ u ˙ r
12 breq1 r = v r ˙ P ˙ u v ˙ P ˙ u
13 12 notbid r = v ¬ r ˙ P ˙ u ¬ v ˙ P ˙ u
14 oveq2 r = v P ˙ u ˙ r = P ˙ u ˙ v
15 14 breq2d r = v s ˙ P ˙ u ˙ r s ˙ P ˙ u ˙ v
16 15 notbid r = v ¬ s ˙ P ˙ u ˙ r ¬ s ˙ P ˙ u ˙ v
17 13 16 3anbi23d r = v P u ¬ r ˙ P ˙ u ¬ s ˙ P ˙ u ˙ r P u ¬ v ˙ P ˙ u ¬ s ˙ P ˙ u ˙ v
18 breq1 s = w s ˙ P ˙ u ˙ v w ˙ P ˙ u ˙ v
19 18 notbid s = w ¬ s ˙ P ˙ u ˙ v ¬ w ˙ P ˙ u ˙ v
20 19 3anbi3d s = w P u ¬ v ˙ P ˙ u ¬ s ˙ P ˙ u ˙ v P u ¬ v ˙ P ˙ u ¬ w ˙ P ˙ u ˙ v
21 11 17 20 rspc3ev u A v A w A P u ¬ v ˙ P ˙ u ¬ w ˙ P ˙ u ˙ v q A r A s A P q ¬ r ˙ P ˙ q ¬ s ˙ P ˙ q ˙ r