Step |
Hyp |
Ref |
Expression |
1 |
|
3dim0.j |
|
2 |
|
3dim0.l |
|
3 |
|
3dim0.a |
|
4 |
1 2 3
|
3dim2 |
|
5 |
4
|
3adant3r1 |
|
6 |
|
simpl2l |
|
7 |
|
simp3l |
|
8 |
|
simp1l |
|
9 |
|
simp1r2 |
|
10 |
1 3
|
hlatjidm |
|
11 |
8 9 10
|
syl2anc |
|
12 |
11
|
oveq1d |
|
13 |
12
|
breq2d |
|
14 |
7 13
|
mtbird |
|
15 |
|
oveq1 |
|
16 |
15
|
oveq1d |
|
17 |
16
|
breq2d |
|
18 |
17
|
notbid |
|
19 |
18
|
biimparc |
|
20 |
14 19
|
sylan |
|
21 |
|
breq1 |
|
22 |
21
|
notbid |
|
23 |
22
|
rspcev |
|
24 |
6 20 23
|
syl2anc |
|
25 |
|
simp2l |
|
26 |
25
|
ad2antrr |
|
27 |
7
|
ad2antrr |
|
28 |
1 3
|
hlatjass |
|
29 |
28
|
3ad2ant1 |
|
30 |
29
|
ad2antrr |
|
31 |
8
|
hllatd |
|
32 |
|
simp1r1 |
|
33 |
|
eqid |
|
34 |
33 3
|
atbase |
|
35 |
32 34
|
syl |
|
36 |
|
simp1r3 |
|
37 |
33 1 3
|
hlatjcl |
|
38 |
8 9 36 37
|
syl3anc |
|
39 |
31 35 38
|
3jca |
|
40 |
39
|
adantr |
|
41 |
33 2 1
|
latleeqj1 |
|
42 |
40 41
|
syl |
|
43 |
42
|
biimpa |
|
44 |
30 43
|
eqtrd |
|
45 |
44
|
breq2d |
|
46 |
27 45
|
mtbird |
|
47 |
26 46 23
|
syl2anc |
|
48 |
|
simpl2r |
|
49 |
48
|
ad2antrr |
|
50 |
8 32 9
|
3jca |
|
51 |
50
|
ad3antrrr |
|
52 |
36 25
|
jca |
|
53 |
52
|
ad3antrrr |
|
54 |
|
simpl3r |
|
55 |
54
|
ad2antrr |
|
56 |
|
simplr |
|
57 |
|
simpr |
|
58 |
1 2 3
|
3dimlem3a |
|
59 |
51 53 55 56 57 58
|
syl113anc |
|
60 |
|
breq1 |
|
61 |
60
|
notbid |
|
62 |
61
|
rspcev |
|
63 |
49 59 62
|
syl2anc |
|
64 |
|
simpl2l |
|
65 |
64
|
ad2antrr |
|
66 |
50
|
ad3antrrr |
|
67 |
52
|
ad3antrrr |
|
68 |
|
simpl3l |
|
69 |
68
|
ad2antrr |
|
70 |
|
simplr |
|
71 |
|
simpr |
|
72 |
1 2 3
|
3dimlem4a |
|
73 |
66 67 69 70 71 72
|
syl113anc |
|
74 |
65 73 23
|
syl2anc |
|
75 |
63 74
|
pm2.61dan |
|
76 |
47 75
|
pm2.61dan |
|
77 |
24 76
|
pm2.61dane |
|
78 |
77
|
3exp |
|
79 |
78
|
rexlimdvv |
|
80 |
5 79
|
mpd |
|