Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Hilbert lattices
3dimlem1
Next ⟩
3dimlem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
3dimlem1
Description:
Lemma for
3dim1
.
(Contributed by
NM
, 25-Jul-2012)
Ref
Expression
Hypotheses
3dim0.j
⊢
∨
˙
=
join
⁡
K
3dim0.l
⊢
≤
˙
=
≤
K
3dim0.a
⊢
A
=
Atoms
⁡
K
Assertion
3dimlem1
⊢
Q
≠
R
∧
¬
S
≤
˙
Q
∨
˙
R
∧
¬
T
≤
˙
Q
∨
˙
R
∨
˙
S
∧
P
=
Q
→
P
≠
R
∧
¬
S
≤
˙
P
∨
˙
R
∧
¬
T
≤
˙
P
∨
˙
R
∨
˙
S
Proof
Step
Hyp
Ref
Expression
1
3dim0.j
⊢
∨
˙
=
join
⁡
K
2
3dim0.l
⊢
≤
˙
=
≤
K
3
3dim0.a
⊢
A
=
Atoms
⁡
K
4
neeq1
⊢
P
=
Q
→
P
≠
R
↔
Q
≠
R
5
oveq1
⊢
P
=
Q
→
P
∨
˙
R
=
Q
∨
˙
R
6
5
breq2d
⊢
P
=
Q
→
S
≤
˙
P
∨
˙
R
↔
S
≤
˙
Q
∨
˙
R
7
6
notbid
⊢
P
=
Q
→
¬
S
≤
˙
P
∨
˙
R
↔
¬
S
≤
˙
Q
∨
˙
R
8
5
oveq1d
⊢
P
=
Q
→
P
∨
˙
R
∨
˙
S
=
Q
∨
˙
R
∨
˙
S
9
8
breq2d
⊢
P
=
Q
→
T
≤
˙
P
∨
˙
R
∨
˙
S
↔
T
≤
˙
Q
∨
˙
R
∨
˙
S
10
9
notbid
⊢
P
=
Q
→
¬
T
≤
˙
P
∨
˙
R
∨
˙
S
↔
¬
T
≤
˙
Q
∨
˙
R
∨
˙
S
11
4
7
10
3anbi123d
⊢
P
=
Q
→
P
≠
R
∧
¬
S
≤
˙
P
∨
˙
R
∧
¬
T
≤
˙
P
∨
˙
R
∨
˙
S
↔
Q
≠
R
∧
¬
S
≤
˙
Q
∨
˙
R
∧
¬
T
≤
˙
Q
∨
˙
R
∨
˙
S
12
11
biimparc
⊢
Q
≠
R
∧
¬
S
≤
˙
Q
∨
˙
R
∧
¬
T
≤
˙
Q
∨
˙
R
∨
˙
S
∧
P
=
Q
→
P
≠
R
∧
¬
S
≤
˙
P
∨
˙
R
∧
¬
T
≤
˙
P
∨
˙
R
∨
˙
S