Metamath Proof Explorer


Theorem 3dimlem1

Description: Lemma for 3dim1 . (Contributed by NM, 25-Jul-2012)

Ref Expression
Hypotheses 3dim0.j ˙ = join K
3dim0.l ˙ = K
3dim0.a A = Atoms K
Assertion 3dimlem1 Q R ¬ S ˙ Q ˙ R ¬ T ˙ Q ˙ R ˙ S P = Q P R ¬ S ˙ P ˙ R ¬ T ˙ P ˙ R ˙ S

Proof

Step Hyp Ref Expression
1 3dim0.j ˙ = join K
2 3dim0.l ˙ = K
3 3dim0.a A = Atoms K
4 neeq1 P = Q P R Q R
5 oveq1 P = Q P ˙ R = Q ˙ R
6 5 breq2d P = Q S ˙ P ˙ R S ˙ Q ˙ R
7 6 notbid P = Q ¬ S ˙ P ˙ R ¬ S ˙ Q ˙ R
8 5 oveq1d P = Q P ˙ R ˙ S = Q ˙ R ˙ S
9 8 breq2d P = Q T ˙ P ˙ R ˙ S T ˙ Q ˙ R ˙ S
10 9 notbid P = Q ¬ T ˙ P ˙ R ˙ S ¬ T ˙ Q ˙ R ˙ S
11 4 7 10 3anbi123d P = Q P R ¬ S ˙ P ˙ R ¬ T ˙ P ˙ R ˙ S Q R ¬ S ˙ Q ˙ R ¬ T ˙ Q ˙ R ˙ S
12 11 biimparc Q R ¬ S ˙ Q ˙ R ¬ T ˙ Q ˙ R ˙ S P = Q P R ¬ S ˙ P ˙ R ¬ T ˙ P ˙ R ˙ S