Metamath Proof Explorer


Theorem 3dimlem4

Description: Lemma for 3dim1 . (Contributed by NM, 25-Jul-2012)

Ref Expression
Hypotheses 3dim0.j ˙ = join K
3dim0.l ˙ = K
3dim0.a A = Atoms K
Assertion 3dimlem4 K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P Q ¬ P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R

Proof

Step Hyp Ref Expression
1 3dim0.j ˙ = join K
2 3dim0.l ˙ = K
3 3dim0.a A = Atoms K
4 simp2l K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P Q ¬ P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S P Q
5 simp2r K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P Q ¬ P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S ¬ P ˙ Q ˙ R
6 simp11 K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R K HL
7 simp2l K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R R A
8 simp12 K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P A
9 simp13 K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R Q A
10 simp3l K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R Q R
11 10 necomd K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R R Q
12 2 1 3 hlatexch2 K HL R A P A Q A R Q R ˙ P ˙ Q P ˙ R ˙ Q
13 6 7 8 9 11 12 syl131anc K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R R ˙ P ˙ Q P ˙ R ˙ Q
14 1 3 hlatjcom K HL Q A R A Q ˙ R = R ˙ Q
15 6 9 7 14 syl3anc K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R Q ˙ R = R ˙ Q
16 15 breq2d K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P ˙ Q ˙ R P ˙ R ˙ Q
17 13 16 sylibrd K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R R ˙ P ˙ Q P ˙ Q ˙ R
18 17 3ad2ant1 K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P Q ¬ P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S R ˙ P ˙ Q P ˙ Q ˙ R
19 5 18 mtod K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P Q ¬ P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S ¬ R ˙ P ˙ Q
20 simp11 K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P Q ¬ P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S K HL P A Q A
21 simp12 K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P Q ¬ P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S R A S A
22 simp13r K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P Q ¬ P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S ¬ S ˙ Q ˙ R
23 simp3 K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P Q ¬ P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S ¬ P ˙ Q ˙ R ˙ S
24 1 2 3 3dimlem4a K HL P A Q A R A S A ¬ S ˙ Q ˙ R ¬ P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S ¬ S ˙ P ˙ Q ˙ R
25 20 21 22 5 23 24 syl113anc K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P Q ¬ P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S ¬ S ˙ P ˙ Q ˙ R
26 4 19 25 3jca K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P Q ¬ P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R