Metamath Proof Explorer


Theorem 3dimlem4OLDN

Description: Lemma for 3dim1 . (Contributed by NM, 25-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses 3dim0.j ˙ = join K
3dim0.l ˙ = K
3dim0.a A = Atoms K
Assertion 3dimlem4OLDN K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P Q ¬ P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R

Proof

Step Hyp Ref Expression
1 3dim0.j ˙ = join K
2 3dim0.l ˙ = K
3 3dim0.a A = Atoms K
4 simp2l K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P Q ¬ P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S P Q
5 simp2r K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P Q ¬ P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S ¬ P ˙ Q ˙ R
6 simp11 K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R K HL
7 simp2l K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R R A
8 simp12 K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P A
9 simp13 K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R Q A
10 simp3l K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R Q R
11 10 necomd K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R R Q
12 2 1 3 hlatexch2 K HL R A P A Q A R Q R ˙ P ˙ Q P ˙ R ˙ Q
13 6 7 8 9 11 12 syl131anc K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R R ˙ P ˙ Q P ˙ R ˙ Q
14 1 3 hlatjcom K HL Q A R A Q ˙ R = R ˙ Q
15 6 9 7 14 syl3anc K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R Q ˙ R = R ˙ Q
16 15 breq2d K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P ˙ Q ˙ R P ˙ R ˙ Q
17 13 16 sylibrd K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R R ˙ P ˙ Q P ˙ Q ˙ R
18 17 3ad2ant1 K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P Q ¬ P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S R ˙ P ˙ Q P ˙ Q ˙ R
19 5 18 mtod K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P Q ¬ P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S ¬ R ˙ P ˙ Q
20 simp3 K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P Q ¬ P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S ¬ P ˙ Q ˙ R ˙ S
21 hllat K HL K Lat
22 6 21 syl K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R K Lat
23 eqid Base K = Base K
24 23 3 atbase Q A Q Base K
25 9 24 syl K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R Q Base K
26 23 3 atbase R A R Base K
27 7 26 syl K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R R Base K
28 23 3 atbase P A P Base K
29 8 28 syl K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P Base K
30 23 1 latjrot K Lat Q Base K R Base K P Base K Q ˙ R ˙ P = P ˙ Q ˙ R
31 22 25 27 29 30 syl13anc K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R Q ˙ R ˙ P = P ˙ Q ˙ R
32 31 breq2d K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R S ˙ Q ˙ R ˙ P S ˙ P ˙ Q ˙ R
33 simp2r K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R S A
34 23 1 3 hlatjcl K HL Q A R A Q ˙ R Base K
35 6 9 7 34 syl3anc K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R Q ˙ R Base K
36 simp3r K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R ¬ S ˙ Q ˙ R
37 23 2 1 3 hlexch1 K HL S A P A Q ˙ R Base K ¬ S ˙ Q ˙ R S ˙ Q ˙ R ˙ P P ˙ Q ˙ R ˙ S
38 6 33 8 35 36 37 syl131anc K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R S ˙ Q ˙ R ˙ P P ˙ Q ˙ R ˙ S
39 32 38 sylbird K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R S ˙ P ˙ Q ˙ R P ˙ Q ˙ R ˙ S
40 39 3ad2ant1 K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P Q ¬ P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S S ˙ P ˙ Q ˙ R P ˙ Q ˙ R ˙ S
41 20 40 mtod K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P Q ¬ P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S ¬ S ˙ P ˙ Q ˙ R
42 4 19 41 3jca K HL P A Q A R A S A Q R ¬ S ˙ Q ˙ R P Q ¬ P ˙ Q ˙ R ¬ P ˙ Q ˙ R ˙ S P Q ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q ˙ R