Metamath Proof Explorer


Theorem 3ecase

Description: Inference for elimination by cases. (Contributed by NM, 13-Jul-2005)

Ref Expression
Hypotheses 3ecase.1 ¬ φ θ
3ecase.2 ¬ ψ θ
3ecase.3 ¬ χ θ
3ecase.4 φ ψ χ θ
Assertion 3ecase θ

Proof

Step Hyp Ref Expression
1 3ecase.1 ¬ φ θ
2 3ecase.2 ¬ ψ θ
3 3ecase.3 ¬ χ θ
4 3ecase.4 φ ψ χ θ
5 4 3exp φ ψ χ θ
6 1 2a1d ¬ φ ψ χ θ
7 5 6 pm2.61i ψ χ θ
8 7 2 3 pm2.61nii θ