Metamath Proof Explorer


Theorem 3eltr3d

Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses 3eltr3d.1 φ A B
3eltr3d.2 φ A = C
3eltr3d.3 φ B = D
Assertion 3eltr3d φ C D

Proof

Step Hyp Ref Expression
1 3eltr3d.1 φ A B
2 3eltr3d.2 φ A = C
3 3eltr3d.3 φ B = D
4 1 3 eleqtrd φ A D
5 2 4 eqeltrrd φ C D