Metamath Proof Explorer


Theorem 3eltr3i

Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses 3eltr3i.1 A B
3eltr3i.2 A = C
3eltr3i.3 B = D
Assertion 3eltr3i C D

Proof

Step Hyp Ref Expression
1 3eltr3i.1 A B
2 3eltr3i.2 A = C
3 3eltr3i.3 B = D
4 1 3 eleqtri A D
5 2 4 eqeltrri C D