Metamath Proof Explorer


Theorem 3eltr4g

Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017) (Proof shortened by Wolf Lammen, 23-Nov-2019)

Ref Expression
Hypotheses 3eltr4g.1 φ A B
3eltr4g.2 C = A
3eltr4g.3 D = B
Assertion 3eltr4g φ C D

Proof

Step Hyp Ref Expression
1 3eltr4g.1 φ A B
2 3eltr4g.2 C = A
3 3eltr4g.3 D = B
4 2 1 eqeltrid φ C B
5 4 3 eleqtrrdi φ C D