Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Classes
Class membership
3eltr4g
Metamath Proof Explorer
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro , 6-Jan-2017) (Proof shortened by Wolf Lammen , 23-Nov-2019)
Ref
Expression
Hypotheses
3eltr4g.1
⊢ φ → A ∈ B
3eltr4g.2
⊢ C = A
3eltr4g.3
⊢ D = B
Assertion
3eltr4g
⊢ φ → C ∈ D
Proof
Step
Hyp
Ref
Expression
1
3eltr4g.1
⊢ φ → A ∈ B
2
3eltr4g.2
⊢ C = A
3
3eltr4g.3
⊢ D = B
4
2 1
eqeltrid
⊢ φ → C ∈ B
5
4 3
eleqtrrdi
⊢ φ → C ∈ D