Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Classes Class membership 3eltr4g  
				
		 
		
			
		 
		Description:   Substitution of equal classes into membership relation.  (Contributed by Mario Carneiro , 6-Jan-2017)   (Proof shortened by Wolf Lammen , 23-Nov-2019) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						3eltr4g.1    ⊢   φ   →   A  ∈  B         
					 
					
						3eltr4g.2   ⊢   C  =  A       
					 
					
						3eltr4g.3   ⊢   D  =  B       
					 
				
					Assertion 
					3eltr4g    ⊢   φ   →   C  ∈  D         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							3eltr4g.1   ⊢   φ   →   A  ∈  B         
						
							2 
								
							 
							3eltr4g.2  ⊢   C  =  A       
						
							3 
								
							 
							3eltr4g.3  ⊢   D  =  B       
						
							4 
								2  1 
							 
							eqeltrid   ⊢   φ   →   C  ∈  B         
						
							5 
								4  3 
							 
							eleqtrrdi   ⊢   φ   →   C  ∈  D