Metamath Proof Explorer


Theorem 3eltr4i

Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses 3eltr4i.1 A B
3eltr4i.2 C = A
3eltr4i.3 D = B
Assertion 3eltr4i C D

Proof

Step Hyp Ref Expression
1 3eltr4i.1 A B
2 3eltr4i.2 C = A
3 3eltr4i.3 D = B
4 1 3 eleqtrri A D
5 2 4 eqeltri C D