Metamath Proof Explorer


Theorem 3exbii

Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995)

Ref Expression
Hypothesis 3exbii.1 φ ψ
Assertion 3exbii x y z φ x y z ψ

Proof

Step Hyp Ref Expression
1 3exbii.1 φ ψ
2 1 exbii z φ z ψ
3 2 2exbii x y z φ x y z ψ