Metamath Proof Explorer


Theorem 3gencl

Description: Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996)

Ref Expression
Hypotheses 3gencl.1 D S x R A = D
3gencl.2 F S y R B = F
3gencl.3 G S z R C = G
3gencl.4 A = D φ ψ
3gencl.5 B = F ψ χ
3gencl.6 C = G χ θ
3gencl.7 x R y R z R φ
Assertion 3gencl D S F S G S θ

Proof

Step Hyp Ref Expression
1 3gencl.1 D S x R A = D
2 3gencl.2 F S y R B = F
3 3gencl.3 G S z R C = G
4 3gencl.4 A = D φ ψ
5 3gencl.5 B = F ψ χ
6 3gencl.6 C = G χ θ
7 3gencl.7 x R y R z R φ
8 df-rex z R C = G z z R C = G
9 3 8 bitri G S z z R C = G
10 6 imbi2d C = G D S F S χ D S F S θ
11 4 imbi2d A = D z R φ z R ψ
12 5 imbi2d B = F z R ψ z R χ
13 7 3expia x R y R z R φ
14 1 2 11 12 13 2gencl D S F S z R χ
15 14 com12 z R D S F S χ
16 9 10 15 gencl G S D S F S θ
17 16 com12 D S F S G S θ
18 17 3impia D S F S G S θ