Metamath Proof Explorer


Theorem 3ianor

Description: Negated triple conjunction expressed in terms of triple disjunction. (Contributed by Jeff Hankins, 15-Aug-2009) (Proof shortened by Andrew Salmon, 13-May-2011) (Revised by Wolf Lammen, 8-Apr-2022)

Ref Expression
Assertion 3ianor ¬ φ ψ χ ¬ φ ¬ ψ ¬ χ

Proof

Step Hyp Ref Expression
1 ianor ¬ φ ψ ¬ φ ¬ ψ
2 1 orbi1i ¬ φ ψ ¬ χ ¬ φ ¬ ψ ¬ χ
3 ianor ¬ φ ψ χ ¬ φ ψ ¬ χ
4 df-3an φ ψ χ φ ψ χ
5 3 4 xchnxbir ¬ φ ψ χ ¬ φ ψ ¬ χ
6 df-3or ¬ φ ¬ ψ ¬ χ ¬ φ ¬ ψ ¬ χ
7 2 5 6 3bitr4i ¬ φ ψ χ ¬ φ ¬ ψ ¬ χ