Metamath Proof Explorer
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017)
(Proof shortened by Wolf Lammen, 13-Apr-2022)
|
|
Ref |
Expression |
|
Hypotheses |
3imp3i2an.1 |
|
|
|
3imp3i2an.2 |
|
|
|
3imp3i2an.3 |
|
|
Assertion |
3imp3i2an |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3imp3i2an.1 |
|
| 2 |
|
3imp3i2an.2 |
|
| 3 |
|
3imp3i2an.3 |
|
| 4 |
2
|
3adant2 |
|
| 5 |
1 4 3
|
syl2anc |
|