Metamath Proof Explorer


Theorem 3impexp

Description: Version of impexp for a triple conjunction. (Contributed by Alan Sare, 31-Dec-2011)

Ref Expression
Assertion 3impexp φ ψ χ θ φ ψ χ θ

Proof

Step Hyp Ref Expression
1 id φ ψ χ θ φ ψ χ θ
2 1 3expd φ ψ χ θ φ ψ χ θ
3 id φ ψ χ θ φ ψ χ θ
4 3 3impd φ ψ χ θ φ ψ χ θ
5 2 4 impbii φ ψ χ θ φ ψ χ θ