Metamath Proof Explorer


Theorem 3imtr3d

Description: More general version of 3imtr3i . Useful for converting conditional definitions in a formula. (Contributed by NM, 8-Apr-1996)

Ref Expression
Hypotheses 3imtr3d.1 φ ψ χ
3imtr3d.2 φ ψ θ
3imtr3d.3 φ χ τ
Assertion 3imtr3d φ θ τ

Proof

Step Hyp Ref Expression
1 3imtr3d.1 φ ψ χ
2 3imtr3d.2 φ ψ θ
3 3imtr3d.3 φ χ τ
4 1 3 sylibd φ ψ τ
5 2 4 sylbird φ θ τ