Metamath Proof Explorer


Theorem 3ioran

Description: Negated triple disjunction as triple conjunction. (Contributed by Scott Fenton, 19-Apr-2011)

Ref Expression
Assertion 3ioran ¬ φ ψ χ ¬ φ ¬ ψ ¬ χ

Proof

Step Hyp Ref Expression
1 ioran ¬ φ ψ ¬ φ ¬ ψ
2 1 anbi1i ¬ φ ψ ¬ χ ¬ φ ¬ ψ ¬ χ
3 ioran ¬ φ ψ χ ¬ φ ψ ¬ χ
4 df-3or φ ψ χ φ ψ χ
5 3 4 xchnxbir ¬ φ ψ χ ¬ φ ψ ¬ χ
6 df-3an ¬ φ ¬ ψ ¬ χ ¬ φ ¬ ψ ¬ χ
7 2 5 6 3bitr4i ¬ φ ψ χ ¬ φ ¬ ψ ¬ χ