Metamath Proof Explorer
Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005)
|
|
Ref |
Expression |
|
Hypotheses |
3jaodan.1 |
|
|
|
3jaodan.2 |
|
|
|
3jaodan.3 |
|
|
Assertion |
3jaodan |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
3jaodan.1 |
|
2 |
|
3jaodan.2 |
|
3 |
|
3jaodan.3 |
|
4 |
1
|
ex |
|
5 |
2
|
ex |
|
6 |
3
|
ex |
|
7 |
4 5 6
|
3jaod |
|
8 |
7
|
imp |
|