Metamath Proof Explorer
Description: Deduction conjoining the consequents of three implications.
(Contributed by NM, 25-Sep-2005)
|
|
Ref |
Expression |
|
Hypotheses |
3jcad.1 |
|
|
|
3jcad.2 |
|
|
|
3jcad.3 |
|
|
Assertion |
3jcad |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3jcad.1 |
|
| 2 |
|
3jcad.2 |
|
| 3 |
|
3jcad.3 |
|
| 4 |
1
|
imp |
|
| 5 |
2
|
imp |
|
| 6 |
3
|
imp |
|
| 7 |
4 5 6
|
3jca |
|
| 8 |
7
|
ex |
|