Metamath Proof Explorer


Theorem 3jcad

Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005)

Ref Expression
Hypotheses 3jcad.1 φ ψ χ
3jcad.2 φ ψ θ
3jcad.3 φ ψ τ
Assertion 3jcad φ ψ χ θ τ

Proof

Step Hyp Ref Expression
1 3jcad.1 φ ψ χ
2 3jcad.2 φ ψ θ
3 3jcad.3 φ ψ τ
4 1 imp φ ψ χ
5 2 imp φ ψ θ
6 3 imp φ ψ τ
7 4 5 6 3jca φ ψ χ θ τ
8 7 ex φ ψ χ θ τ